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ABSTRACT 
Two common fixed grid enthalpy methods used in the numerical modelling of phase change problems are 
the apparent heat capacity and the source based methods. In this paper, a general enthalpy method that 
includes as subsets both apparent heat capacity and source based methods, is derived. Following this, an 
optimal enthalpy scheme is identified. The superiority of the optimal scheme over the apparent heat capacity 
and the source based schemes is illustrated by solving sample phase change problems. 
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INTRODUCTION 

The key feature in a phase change problem is the presence of a moving boundary (or region) 
on which heat and mass balance conditions have to be met. A popular approach in the numerical 
modelling of such problems is the so-called 'enthalpy' method. The major advantage of this 
method is that despite the presence of moving boundaries, the problem is cast in a conservative 
form that allows for the solution to be obtained on a fixed space grid. There are a variety of 
ways in which the enthalpy method can be implemented1. Two common variations are: (1) the 
apparent heat capacity methods2-4, in which the non-linearity associated with the evolution of 
latent heat is accounted for using a modified heat capacity term, and (2) the source based 
methods5-8, in which the latent heat evolution is represented by a suitable source term. 

The objective of this paper is to present a general enthalpy method that will encompass a 
wide range of the alternative methods previously presented in the literature. Particular attention 
will be directed at apparent heat capacity and source based methods. The focus in this paper 
will be on the essential mechanics of the phase change algorithm. Consequently a major portion 
of the paper will be devoted to the numerical treatment of the energy equation, in particular 
the handling of the latent heat evolution associated with the phase change. In the first instance, 
a conduction driven phase change problem will be considered. Later, applications to problems 
that involve fluid flow and mushy phase change regions will also be demonstrated. Before the 
general approach is proposed, the appropriate governing equations and a brief outline of apparent 
heat capacity and source based methods will be provided. 

GOVERNING EQUATIONS 

In a fluid undergoing a liquid to solid phase transformation (i.e., solidification), the conservation 
of energy can be written down in terms of the mixture enthalpy H as: 
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where p is the density, u is the velocity, T is temperature, and k is the conductivity. A reasonably 
general definition for the mixture enthalpy is1: 

where the subscripts [ ] s and [ ]l refer to solid and liquid respectively, Tref is a reference 
temperature, c is the specific heat, g is the volume fraction of liquid and L is the latent heat 
associated with the phase change. A representative enthalpy-temperature (H-T) curve is shown 
in Figure 1. Note that this representative enthalpy-temperature relationship allows for both an 
isothermal phase change (depicted as a discontinuity in the H-T curve) as well as a mushy 
(solid/liquid) phase change that occurs over a temperature range. 

In problems involving convection effects, in addition to the energy equation, one has to 
consider the equations for mass conservation, viz.: 

and momentum conservation, viz.: 

where μ is the viscosity, p is the pressure and S is a source term. 
For clarity in presentation of the various enthalpy schemes, we shall restrict initial discussions 

to problems with constant thermophysical properties driven by conduction alone. This 
simplification will in no way limit the application of the enthalpy schemes discussed. Under 
these assumptions the governing equation (1) reduces to: 

with the enthalpy H defined as: 
H = cT + gL (6) 
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TWO COMMON ENTHALPY METHODS 

In order to fully illustrate the generalized enthalpy scheme, we shall first discuss the numerical 
mechanics of two existing classes of enthalpy methods. Although we recognize that this is a 
familiar territory for a number of readers, we have included it here for the sake of completeness. 

Apparent heat capacity methods 
In apparent heat capacity methods, (5) is rewritten as2: 

where Capp = dH/dT is called the apparent heat capacity. The major advantage of (7) is that it 
is similar in form to the standard heat conduction equation. On using a fully implicit time 
integration scheme, the control volume9 or finite element10 discrete analog of (7) can be written as: 

where the a's represent the coefficients of the discretization equation. The subscripts [ ] p and 
[ ]nb represent the node point p and the neighbour nodes respectively, while the superscripts 
[ ] m + 1 and [ ]o l d represent the iteration level and the old time value respectively. The term V 
is used to represent the spacial volume associated with a node. Note that (8) assumes a lumped 
capacitance formulation10 for the finite element scheme. In evaluating the coefficients in (8), the 
apparent heat capacity Capp can be obtained using one of many approximations, examples 
include: 

(1) those based on space averaging, e.g., the method proposed by Lemmon3, 

(2) those based on temporal averaging, e.g., the method proposed by Morgan et al.4, 

If the H-T relation involves a step discontinuity, application of the apparent heat capacity 
method will require a finite phase change temperature interval. In a basic implementation, if 
this interval is chosen too small, unless sufficient care is taken in the choice of the time step, it 
is possible to miss out some of the latent heat effects11. This problem can be avoided and the 
performance of the apparent heat capacity method greatly enhanced by using a post-iterative 
correction scheme11 . In this procedure, after the calculation of the (m + 1 )th temperature solution, 
the current enthalpy values are obtained from: 

Hm + l = Ho l d + C a p p [ T m + 1 - Told] (11) 

This step allows for the ready identification of node points that are changing phase. Before the 
next iteration, the temperature at these nodes is adjusted to be consistent with the calculated 
enthalpy values using the given H-T curve. The post-iterative correction step ensures a heat 
balance over the time interval and avoids any latent heat from being missed out. On convergence, 
the post iterative correction procedure will arrive at discrete temperature and enthalpy fields 
that will satisfy the appropriate discrete form of the enthalpy equation (5). 
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Source based methods 
In source based methods, a direct substitution of (6) into (5) is made so that: 

The discrete analog of (12) can be written as: 

After each iterative calculation of the temperature field, the liquid fraction is updated via: 

where ). is a relaxation factor. In practice, this update is followed by an undershoot/overshoot 
correction7 so as to ensure that the liquid fraction is within the bounds of 0 and 1. The application 
of (14) is similar to the post-iterative correction used in the apparent heat capacity methods and 
on convergence ensures a full heat balance over the time interval. A number of possible relations 
for 'corr' in (14) have been proposed in the literature5-8; examples include, but are not limited to: 

(1) the fictitious heat source method5, 

(2) the Brent et al. method7, 

Note that in using either of these corrections, if the phase change is occurring at node p, i.e., 
the value of is forced to be consistent with the appropriate phase change value 

on the H-T curve before the next iteration is commenced. 

A GENERAL METHOD 

The starting point in the derivation of the general method is the direct discrete analog of (5), i.e., 

Equation (17) is solved using the following predictor-corrector procedure at each iteration step. 

Predictor step 
On expanding the enthalpy as: 

(17) can be written in the linear form: 
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where 

Equation (19) is solved for the current temperature field, 

Corrector step 
The enthalpy is updated from the current temperature field via 

Following this the temperature at node points that are changing phase is corrected to be consistent 
with on the appropriate H-T curve. 

The proposed general enthalpy method is ideally designed for problems in which there is a 
unique enthalpy-temperature relationship. Such a condition covers a very wide class of phase 
change problems12. Further it is assumed that at any point in the phase change range (specified 
by the enthalpy-temperature pair H* and T*), the derivative dH/dT is well defined. 

On choosing different approximations for the dH/dT term and appropriate setting of and 
the proposed general approach can be used to represent both apparent heat capacity and 

source based methods. For example, the substitutions: 

in the two step general scheme will lead immediately to the Morgan apparent heat capacity 
scheme with a post-iterative correction ((8) and (11) above). Alternatively the substitutions: 

along with the use of (6) will lead to the fictitious heat source method* ((13)—(15) above). 

AN OPTIMUM APPROACH 

The above examples clearly illustrate how the proposed scheme can readily be used to represent 
a number of apparent heat capacity or source based methods. The examples also illustrate the 
commonality between apparent heat capacity and source based schemes. Having devised a 
general scheme, the key question to ask is whether there is an optimal approach? In other words, 
can we arrive at a particular choice for and dH/dT that would ensure optimal convergence 

* Note that in this derivation, the relationship has been assumed in the enthalpy update 
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on all phase change systems alike? In deriving the apparent heat capacity and source based 
method from the general scheme, an approximation was employed for the slope of the H-T 
curve (i.e., for dH/dT). In many phase change systems the form of the H-T curve is known 
and the exact slope at a given point can be calculated. Recently, the authors12 have proposed 
that the optimum version of the general scheme will be the one that uses the exact replacement 
for dH/dT, i.e., the substitutions: 

will ensure optimal convergence. Note that at discontinuities in the H-T curve the slope dH/dT 
can be accurately approximated using an arbitrarily large value (e.g., 108). The performance of 
the optimal enthalpy scheme on a range of phase change problems will be demonstrated below. 

A PERFORMANCE COMPARISON 

In the first instance, the solidification of steel in a mould will be taken as a test problem. Molten 
steel is held in a long, square (0.762 m x 0.762 m) mould at a temperature Ti = 1535°C, which 
is above the liquidus temperature of TL = 1502.5°C. At time zero, the mould walls are held at 
the temperature TM = 1150°C, which is below the solidus temperature of Ts = 1497.5°C. As 
time progresses, a solid shell and a solid/liquid mushy region ('sandwiched' between the TL and 
Ts isotherms) move inward from the mould walls. The evolution of latent heat in the mushy 
region is assumed to be linear (i.e., the slope of the H-T curve is a constant in the phase change 
interval). If fluid flow and end effects are neglected and symmetry is applied, the problem is 
governed by (5) applied to the two-dimensional quarter mould cross-section. The model problem 
with the thermophysical properties is summarized in Figure 2 and Table 1 respectively. 

In essence, this test problem is a variation of the well known freezing in a corner problem13 

and the accuracy of the enthalpy formulation on this problem is well documented. In the current 
case, the objective is to use this test problem to compare the performance of the variations of 
the proposed general scheme. In this performance testing, a finite difference approximation on 
a uniform 41 x 41 space grid and a time step of 261.29 sec (corresponding to a discrete Fourier 
number of 16) will be used. The performance of three schemes is investigated: (1) the Morgan 
scheme (22), (2) the fictitious heat source scheme (23), and (3) the optimal scheme (24). Table 
2 summarizes the total number of iterations and CPU time on an IBM PC for 20 time steps of 
simulation for the three schemes. Figure 3 shows the convergence pattern in terms of the 
normalized L2 norm of the residual of the discrete energy equation for the three schemes. This 
numerical experiment clearly shows the performance advantage of the optimal enthalpy scheme. 

Further insight into the mechanisms and performance of the various schemes can be obtained 
on considering the iterative relationships between the temperature and enthalpy. Figure 4 
schematically illustrates the iterative progress of temperature and enthalpy at a particular node 
during a given time step. In this example, at the start of the time step, the consistent value of 
the enthalpy-temperature pair are assumed to be outside of the phase change interval 
(point 'a'). The initial iterative predictor-corrector steps are identical for all the three schemes. 
In effect, the iterative value of the temperature obtained from the predictor step will be located 
on the extension of the liquid H-T slope (slope PQ). This is depicted by point 'b' in the Figure. 
Before the next iteration, the enthalpy is updated and the temperature is made consistent with 
the H-T curve. The corrected value of temperature is denoted by point 'c'. It is from this point 
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onwards that the three methods begin to differ. We shall consider each of the three methods in 
turn: 

1. Fictitious heat source method (Figure 4a): In the fictitious heat source method, during the 
next iteration, the predicted temperature value will lie on a line passing through the point 'c' 
with a slope equal to the slope of the liquid H-T curve (i.e., slope PQ). Next, the enthalpy is 
updated and the temperature is made consistent with the H-T curve. This procedure continues 
until convergence. Clearly the speed of convergence is controlled by the difference in the slopes 
of line PQ and QR. When over-relaxation is used in the fictitious heat source method, the 
chosen slope will in effect be steeper and convergence should improve. 
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Table 1 Solidification of a steel ingot: thermophysical 
properties and boundary and initial conditions 

Conductivity, k 
Specific heat, c 
Density, p 
Latent heat, L 
Solidus temperature, Ts 
Liquidus temperature, TL 
Initial temperature, Ti 
Mould wall temperature, Tw 

30.0 W/m°C 
750 J/kg°C 

7200.0 kg/m3 

262.5 kJ/kg 
1497.5°C 
1502.5°C 
1535.0°C 
1150.0°C 

Table 2 Performance of enthalpy schemes in terms of 
the number of iterations and CPU requirement for 20 
time steps of simulation on an IBM 386 25 MHz machine 

Method 

Apparent heat capacity 
Fictitious heat source 
Optical enthalpy 

*The convergence criteria 
tolerance of 10 -5 

No. of 
iterations* 

1267 
6519 
182 

CPU (sec) 

2387.97 
12708.39 

361.30 

is a normalized residual 

2. Apparent heat capacity method (Figure 4b): In the apparent heat capacity method, during 
the next iteration, the predicted temperature value will lie on a line passing through the point 
'c' with a slope equal to the slope of line ac (i.e., Clearly the slope 
becomes progressively steeper and one would expect the convergence to be faster than the 
fictitious heat source method. In essence, the method can be viewed as a fictitious heat source 
method with adaptive over-relaxation. 

3. Optimal enthalpy method {Figure 4c): In the optimal method, however, since the exact 
slope (i.e. slope QR) is picked, the iteration path will be confined to the H-T curve and 
convergence will be very rapid. 

Before leaving this test problem it is important to note that for a given convergence tolerance, 
the results from each of the three schemes were close to identical. Also on the scale of the 
problem, the chosen freezing range of 5°C can be considered to be very small and the problem 
is close to an isothermal problem. It is stressed, however, that in using the optimal scheme this 
range could have been made arbitrarily small (e.g., 10-8). Such a choice, however, made very 
little difference to the results. 

A PROBLEM WITH FLUID FLOW 

Next we consider the solidification of an aluminium alloy in the presence of natural convection 
in the melt. Three different latent heat evolution mechanisms are investigated as shown in Figure 
5. Curve A corresponds to an isothermal solidification (e.g., an alloy of eutectic composition). 
Curves B and C correspond to a mushy region solidification. In curve B, the latent heat is 
assumed to evolve linearly. Usmani et al.14 have solved this problem using an unequal order 
finite element method. In curve C, the latent heat is assumed to evolve in a non-linear fashion 
(e.g., the Scheil equation15). Curve C corresponds to an A1-4.5% Cu alloy and all thermophysical 
properties for the problem are consistent with this alloy. A columnar dendritic solidification 
morphology is assumed such that the solid velocity in the mushy region is zero. Under this 
assumption, the governing enthalpy equation reduces to: 

The model problem with all the thermophysical properties and enthalpy-temperature 
relationship is summarized in Figure 6 and Tables 3 and 4. 

In the first instance, a control volume finite difference discretization with a staggered grid 
arrangement9 is used. The SIMPLER algorithm9 is used to solve the discrete momentum and 
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Table 3 Solidification of an aluminium alloy in the presence of natural 
convection: thermophysical properties and boundary and initial 
conditions 

Conductivity, k 
Specific heat, c 
Density, p 
Latent heat, L 
Viscosity, μ 
Coefficient of thermal expansion, β 
Initial temperature, Ti 
Wall temperature, Tw 
Eutectic temperature, TE (curve A) 
Solidus temperature, Ts (curve B) 
Eutectic temperature, TE (curve C) 
Liquidus temperature, TL (curve B, C) 
Melting point of aluminium, TA1 
Partition coefficient, K 

100.0 W/m°C 
1000.0 J/kg°C 
2500.0 kg/m3 

400.0 kJ/kg 
0.0025 kg/ms 
4.0 x 10 -5 

700.0°C 
500.0°C 
600.0°C 
550.0°C 
550.0°C 
650.0°C 
675.0°C 

0.14 

Table 4 Solidification of an aluminium alloy in the presence of natural convection: enthalpy-temperature 
relation in the phase change region for the three curves A, B and C 

Curve Enthalpy-temperature relationship 
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continuity equations. The enthalpy-porosity technique of Brent et al.7 is used to model the flow 
in the mushy region. In this model, the source term S in the momentum equations takes the form7: 

where C is the morphological constant, β is the coefficient of thermal expansion, and grav is 
the acceleration due to gravity. In essence the flow in the mushy region is made to mimic flow 
in a porous media and the velocities in the system approach zero as the full solid region is 
reached. The second term on the right hand side of (26) is a result of the Boussinesq 
approximation. The enthalpy-porosity technique of modelling flow in the mushy region has 
been experimentally validated in the case of melting of a block of gallium7. 

In the computational runs a 30 x 30 grid of uniform control volumes is used. The 
under-relaxation factor in the momentum equations is set to 0.8. The time step size is varied 
from 0.04 to 1.96 sec in a linear manner. In addition, when using the apparent heat capacity 
approach, a phase change temperature interval of 1°C was used at discontinuities in the 
enthalpy-temperature curve. Further details on the implementation of the enthalpy methods 
can be found in References 7 and 12. 

Table 5 summarizes the performance results of the computation in terms of the number of 
iterations and CPU time on the CRAY-YMP for 25 time steps of simulation. Two different 
convergence criteria were used: a maximum mass imbalance of 10 - 4 for the momentum equations 
and a maximum absolute difference in the sum of the liquid fraction field of 10-4 for the energy 
equation. The results indicate that: 

1. the optimal enthalpy approach outperforms the apparent heat capacity and the fictitious 
heat source method for all choices of latent heat evolution mechanisms; 

2. on the isothermal test problem, the fictitious heat source method is relatively slower 
compared to the other two methods because the approximation for the slope is a severe 
under-estimation of the actual slope in the phase change range. The convergence can be. 
significantly improved if the enthalpy update (21) is over-relaxed, e.g. with a value of λ = 5, the 
number of iterations were reduced from 2362 to 665; 

3. on the linear test problem, the performance of all the schemes are almost identical since 
the slopes outside and inside of the phase change region are relatively close in value, i.e., 1000 
as against 5000. 

The enthalpy porosity model has also been implemented in the unequal order control volume 
finite element scheme of Ramadhyani16. This technique uses special exponential shape functions17 

for the velocity and the temperature variable and the standard bilinear shape function for the 
pressure variable. The resulting discrete equations are solved using the SIMPLER algorithm9. 
Full details on this finite element scheme can be found in Ramadhyani16. The performance 

Table 5 Performance comparison of enthalpy schemes implemented in a control volume finite difference discretization 
in terms of the number of iterations and CPU requirement for 25 time steps of simulation on the CRAY-YMP 
supercomputer 

Problem 

A. Isothermal 
B. Linear 
C. Scheil 

Apparent heat capacity 

No. of 
iterations 

897 
367 
571 

CPU (sec) 

66.758 
28.698 
52.369 

Fictitious heat source 

No. of 
iterations 

2362 
448 

1264 

CPU (sec) 

172.396 
34.781 
97.212 

Optimal enthalpy 

No. of 
iterations 

432 
326 
326 

CPU (sec) 

33.069 
25.904 
27.057 
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Table 6 Performance comparison of enthalpy schemes implemented in a control volume finite element discretization 
in terms of the number of iterations and CPU requirement for 25 time steps of simulation on the CRAY-YMP 
supercomputer 

Problem 

A. Isothermal 
B. Linear 
C. Scheil 

Apparent heat capacity 

No. of 
iterations 

976 
358 
485 

CPU (sec) 

834.032 
304.732 
417.946 

Fictitious heat source 

No. of 
iterations 

3131 
441 

1400 

CPU (sec) 

2527.611 
371.817 

1130.504 

Optimal enthalpy 

No. of 
iterations 

555 
326 
345 

CPU (sec) 

474.250 
278.572 
294.090 

results, based on a uniform 30 x 30 grid (corresponding to 961 velocity nodes and 256 pressure 
nodes) are shown in Table 6. The under-relaxation factors, the time step and the convergence 
criteria are the same as that used in the finite difference implementation. A key feature in these 
results as compared to the finite difference results is an order of magnitude increase in the CPU 
requirements. This is due in part to the current overhead required to solve the finite element 
equations. Once again as clearly shown in Table 6, the optimal enthalpy method outperforms 
the apparent heat capacity and the fictitious heat source method. 

Figure 7 compares the isotherms obtained using the finite difference and finite element schemes 
for each of the chosen H-T curves. The comparison can be considered to be reasonable. 
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CONCLUSIONS 

The objective of this paper has been to provide a comprehensive and unifying treatment of 
enthalpy methods for phase change problems. The major contributions have been: (1) the 
introduction of a generalized predictor-corrector scheme that encompasses many existing 
schemes, (2) the identification of an optimal scheme, and (3) a graphical demonstration of the 
iteration paths of various enthalpy schemes. 

The optimal enthalpy scheme is compared to the apparent heat capacity scheme and the 
fictitious heat source scheme on a pure conduction driven problem as well as on problems 
involving natural convection. Both isothermal and mushy phase change problems have been 
considered. The comparison indicates the superiority of the optimal scheme. Although the test 
problems considered are relatively simple, the enthalpy methods covered by the umbrella of the 
proposed general scheme are readily applicable to more complex and practical phase change 
problems. 
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